
direpack
Release 1.0.10

Sven Serneels and Emmanuel Jordy Menvouta

Jun 23, 2023

CONTENTS

1 Installation 3

2 Examples 5

3 Contents 7
3.1 ppdire . 7
3.2 sudire . 12
3.3 sprm . 16
3.4 Pre-processing . 21
3.5 Cross-validation and plotting . 24
3.6 Contributing . 25

4 Indices and tables 27

Index 29

i

ii

direpack, Release 1.0.10

The direpack package aims to establish a set of modern statistical dimension reduction techniques into the Python uni-
verse as a single, consistent package. The dimension reduction methods included resort into three categories: projection
pursuit based dimension reduction, sufficient dimension reduction, and robust M estimators for dimension reduction.
As a corollary, regularized regression estimators based on these reduced dimension spaces are provided as well, rang-
ing from classical principal component regression up to sparse partial robust M regression. The package also contains
a set of classical and robust pre-processing utilities, including generalized spatial signs, as well as dedicated plotting
functionality and cross-validation utilities. Finally, direpack has been written consistent with the scikit-learn API, such
that the estimators can flawlessly be included into (statistical and/or machine) learning pipelines in that framework.

CONTENTS 1

direpack, Release 1.0.10

2 CONTENTS

CHAPTER

ONE

INSTALLATION

The package is distributed through PyPI, so use:

pip install direpack

3

direpack, Release 1.0.10

4 Chapter 1. Installation

CHAPTER

TWO

EXAMPLES

Example notebooks have been produced to showcase the use of direpack for statistical dimension reduction. These
notebooks contain a ppdire example , sprm example and a sudire example .

5

https://github.com/SvenSerneels/direpack/blob/master/examples/ppdire_example.ipynb
https://github.com/SvenSerneels/direpack/blob/master/examples/sprm_example.ipynb
https://github.com/SvenSerneels/direpack/blob/master/examples/sudire_example.ipynb

direpack, Release 1.0.10

6 Chapter 2. Examples

CHAPTER

THREE

CONTENTS

3.1 ppdire

Beyond discussion, the class of dimension reduction with the longest standing history accessible through direpack, is
projection pursuit (PP) dimension reduction. Let X be a data matrix that is a sample of 𝑛 cases of a 𝑝 variate random
variable and y be a sample of a corresponding depending variable, when applicable. The set of projection pursuit
scores t𝑖 that span the columns of T are defined as linear combinations of the original variables: T = XW, where
the w𝑖 are the solution to the optimization problem:

maximise
a

P
(︀
S
(︀
a𝑇X

)︀)︀
subject to w𝑇

𝑖 X
𝑇Xw𝑗 = 0 and ‖ w𝑖 ‖2= 1,

where 𝑖, 𝑗 ∈ [1,min(𝑛, 𝑝)], 𝑗 > 𝑖 and the set S = {X,y} if data for a dependent variable 𝑌 exist and is a singleton
containing X otherwise. Maximization of this criterion is very flexible and the properties of the dimension reduction
accomplished according to it can vary widely, mainly dependent on the presence or absence of dependent variable data,
as well as on P, which in the PP literature is referred to as the projection index.

3.1.1 dicomo

The projection index determines which method is being calculated. In direpack, projection pursuit can be called through
the ppdire subpackge and class object, which allows the user to pass any function of appropriate dimensionality as a
projection index. However, a set of popular projection indices deriving from (co-)moments, are provided as well through
the dicomo subpackage. For several of these, plugging them in leads to well-established methods. They comprise:

• Moment statistics: variance (PCA), higher order moments

• Co-moment statistics: covariance (PLS), higher order co-moments

• Standardized moments: skewness (ICA), kurtosis (ICA)

• Standardized co-moments: correlation coefficient (CCA), co-skewness, co-kurtosis

• Linear combinations of (standardized co-) moments. Here, the capi.py file in the ppdire subpackage delivers to
co-moment analysis projection index (Serneels2019).

• Products of (co-)moments. Particularly the continuum association measure has been provided, which is given by
cont(X,y) = cov(X,y) var(X)𝛼−1. Using this continuum measure produces continuum regression (CR, Stone
and Brooks (1990)). CR is equivalent to PLS for 𝛼 = 1 and approaches PCA as 𝛼 → ∞.

7

direpack, Release 1.0.10

3.1.2 pp optimizers

Early ideas behind PP was the ability to scan all directions maximizing the projection index as denoted in (3.1). This
essentially corresponds to a brute force optimization technique, which can be computationally very demanding. For
instance, both PCA and PLS, can be solved analytically, leading to efficient algorithms that do not directly optimize
(3.1). Whenever the projection index plugged in, leads to a convex optimization problem, it is advisable to apply an
efficient numerical optimization technique. For that purpose,ppdire has the option to use scipy.optimize’s sequential
least squares quadratic programming optimization (SLSQP). However, for projection indices based on ordering or
ranking data, such as medians or trimmed (co-)moments, the problem is no longer convex and cannot be solved through
SLSQP. For those purposes, the grid algorithm is included, which was originally developed to compute RCR (Filzmoser,
Serneels, Croux, andVan Espen 2006).

3.1.3 Regularized regression

While the main focus of direpack is dimension reduction, all dimension reduction techniques offer a bridge to regu-
larized regression. This can be achieved by regressing the dependent variable onto the estimated dimension reduced
space. The latter provides regularization of the covariance matrix, due to the constraints in (3.1), and allow to perform
regression for an undersampled X. The classical estimate is to predict y through least squares regression:

ŷ = T̂T̂𝑇y

which again leads to well-established methods such as principal component regression (PCR), PLS regression, etc.

3.1.4 Usage

ppdire(projection_index[, pi_arguments, ...]) PPDIRE Projection Pursuit Dimension Reduction

direpack.ppdire.ppdire.ppdire

class ppdire(projection_index, pi_arguments={}, n_components=1, trimming=0, alpha=1, optimizer='SLSQP',
optimizer_options={'maxiter': 100000}, optimizer_constraints=None, regopt='OLS',
center='mean', center_data=True, scale_data=True, whiten_data=False, square_pi=False,
compression=False, copy=True, verbose=True, return_scaling_object=True)

PPDIRE Projection Pursuit Dimension Reduction

The class allows for calculation of the projection pursuit optimization either through scipy.optimize or through the
grid algorithm, native to this package. The class provides a very flexible way to access optimization of projection
indices that can lead to either classical or robust dimension reduction. Optimization through scipy.optimize is
much more efficient, yet it will only provide correct results for classical projection indices. The native grid
algorithm should be used when the projection index involves order statistics of any kind, such as ranks, trimming,
winsorizing, or empirical quantiles. The grid optimization algorithm for projection pursuit implemented here,
was outlined in:

Filzmoser, P., Serneels, S., Croux, C. and Van Espen, P.J., Robust multivariate methods: The
projection pursuit approach, in: From Data and Information Analysis to Knowledge Engineering,
Spiliopoulou, M., Kruse, R., Borgelt, C., Nuernberger, A. and Gaul, W., eds., Springer Verlag, Berlin,
Germany, 2006, pages 270–277.

Parameters
projection_index – dicomo and capi supplied in this package can both be used, but user
defined projection indices can be processed

8 Chapter 3. Contents

direpack, Release 1.0.10

Attributes always provided

• x_weights_: X block PPDIRE weighting vectors (usually denoted W)

• x_loadings_: X block PPDIRE loading vectors (usually denoted P)

• x_scores_: X block PPDIRE score vectors (usually denoted T)

• x_ev_: X block explained variance per component

• x_Rweights_: X block SIMPLS style weighting vectors (usually denoted R)

• x_loc_: X block location estimate

• x_sca_: X block scale estimate

• crit_values_: vector of evaluated values for the optimization objective.

• Maxobjf_: vector containing the optimized objective per component.

Attributes created when more than one block of data is provided

• C_: vector of inner relationship between response and latent variables block

• coef_: vector of regression coefficients, if second data block provided

• intercept_: intercept

• coef_scaled_: vector of scaled regression coefficients (when scaling option used)

• intercept_scaled_: scaled intercept

• residuals_: vector of regression residuals

• y_ev_: y block explained variance

• fitted_: fitted response

• y_loc_: y location estimate

• y_sca_: y scale estimate

Attributes created only when corresponding input flags are `True`

• whitening_: whitened data matrix (usually denoted K)

• mixing_: mixing matrix estimate

• scaling_object_: scaling object from VersatileScaler

__init__(projection_index, pi_arguments={}, n_components=1, trimming=0, alpha=1, optimizer='SLSQP',
optimizer_options={'maxiter': 100000}, optimizer_constraints=None, regopt='OLS',
center='mean', center_data=True, scale_data=True, whiten_data=False, square_pi=False,
compression=False, copy=True, verbose=True, return_scaling_object=True)

3.1. ppdire 9

direpack, Release 1.0.10

Methods

__init__(projection_index[, pi_arguments, ...])

fit(X, *args, **kwargs) Fit a projection pursuit dimension reduction model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator. :param deep: If

True, will return the parameters for this estimator and
contained subobjects that are estimators. :type deep:
boolean, optional.

predict(Xn) predicts the response on new data Xn
score(X, y[, sample_weight]) Return the coefficient of determination of the predic-

tion.
set_params(**params) Set the parameters of this estimator. Copied from

ScikitLearn, adapted to avoid calling 'deep=True' :re-
turns: * self * ------ * Copied from ScikitLlearn in-
stead of imported to avoid 'deep=True'.

transform(Xn) Computes the dimension reduction of the data Xn
based on the fitted sudire model.

Attributes

dicomo([est, mode, center]) The dicomo class implements (co)-moment statistics,
covering both clasical product-moment statistics, as well
as more recently developed energy statistics.

direpack.dicomo.dicomo.dicomo

class dicomo(est='arithmetic', mode='mom', center='mean')
The dicomo class implements (co)-moment statistics, covering both clasical product-moment statistics, as well
as more recently developed energy statistics. The dicomo class also serves as a plug-in into capi and ppdire.
It has been written consistently with ppdire such that it provides a wide range of projection indices based on
(co-)moments. Ancillary functions for (co-)moment estimation are in _dicomo_utils.py.

Parameters

• est (str) – mode of estimation. The set of options are ‘arithmetic’ (product-moment) or
‘distance’ (energy statistics)

• mode (str) – type of moment. Options include : * ‘mom’: moment * ‘var’: variance * ‘std’:
standard deviation * ‘skew’: skewness * ‘kurt’: kurtosis * ‘com’: co-moment * ‘M3’: short-
cut for third order co-moment * ‘cov’: covariance * ‘cos’: co-skewness * ‘cok’: co-kurtosis
* ‘corr’: correlation, * ‘continuum’: continuum association * ‘mdd’: martingale difference
divergence (requires est = ‘distance’) * ‘mdc’: martingale difference correlation (requires
est = ‘distance’) * ‘ballcov’: ball covariance (requires installing Ball and uncommenting the
import statement)

• center (str) – internal centring used in calculation. Options are mean or median.

10 Chapter 3. Contents

direpack, Release 1.0.10

Attributes always provided

• moment_: The resulting (co-)moment Depending on the options picked, intermediate results are stored
as well, such as x_moment_, y_moment_ or co_moment_

__init__(est='arithmetic', mode='mom', center='mean')

Methods

__init__([est, mode, center])

fit(x, **kwargs) Fit a dicomo model
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

Attributes

3.1.5 Dependencies

• From sklearn.base: BaseEstimator,`TransformerMixin`,`RegressorMixin`

• From sklearn.utils: _BaseComposition

• copy

• scipy.stats

• From scipy.linalg: pinv2

• From scipy.optimize: minimize

• numpy

• From statsmodels.regression.quantile_regression: QuantReg

• From sklearn.utils.extmath: svd_flip

3.1.6 References

1. Peter Filzmoser, Sven Serneels, Christophe Croux and Pierre J. Van Espen, Robust Multivariate Methods: The
Projection Pursuit Approach, in: From Data and Information Analysis to Knowledge Engineering,Spiliopoulou,
M., Kruse, R., Borgelt, C., Nuernberger, A. and Gaul, W., eds., Springer Verlag, Berlin, Germany, 2006, pages
270–277.

2. Sven Serneels, Projection pursuit based generalized betas accounting for higher order co-moment effects in finan-
cial market analysis, in: JSM Proceedings, Business and Economic Statistics Section. Alexandria, VA: American
Statistical Association, 2019, 3009-3035.

3. Chen, Z. and Li, G., Robust principal components and dispersion matrices via projection pursuit, Research
Report, Department of Statistics, Harvard University, 1981.

4. Peter Filzmoser, Christophe Croux, Pierre J. Van Espen, Robust Continuum Regression, Sven Serneels, Chemo-
metrics and Intelligent Laboratory Systems, 76 (2005), 197-204.

3.1. ppdire 11

direpack, Release 1.0.10

5. Stone M, Brooks RJ (1990). “Continuum Regression: Cross-Validated Sequentially Constructed Prediction
Embracing Ordinary Least Squares, Partial Least Squares and PrincipalComponents Regression.”Journal of the
Royal Statistical Society. Series B (Methodological),52, 237–269.

3.2 sudire

Sufficient dimension reduction (SDR) is a recent take on dimension reduction, where one aims to estimate a set of latent
variables that are linear combinations of the original variables T = XW in such a way that the subspace spanned by
them contains all information relevant to the dependent variable in such a way that the subspace spanned by them
contains all information relevant to the dependent variable: YX | T. Here, X is a sample of 𝑛 cases of a 𝑝 variate
random variable and Y is a sample of the dependent variable, W is a 𝑝× 𝑞 matrix with 𝑞 ≤ 𝑝, and denotes statistical
independence. A lot of research has been done over the last thirty years investigating different approaches in terms of
asymptotics and assumptions made in each of the approaches. A good textbook providing an overview of approaches
to SDR is Li (2018). The subpackage sudire contains implementations of a broad set of these approaches.

Generally speaking, SDR techniques roughly resort in three categories. At first, there is a successful set of approaches
to SDR based on slicing the original space. Examples of these are sliced inverse regression (SIR, Li (1991)) and
sliced-average variance estimation (SAVE, Cook (2000)). A second group of developments has involved selective
focus on certain directions, which has resulted in, among others, directional regression (DR, Li (2007)), principal
Hessian directions (PHD, Li (1992)) and the iterative Hessian transformations (IHT, Cook and Li (2002)).

While all of the aforementioned methods are included in sudire and would merit a broader discussion, at this point we
would like to highlight that sudire contains implementations of a more recent approach as well. The latter has, so far,
resulted in three methods, all three of which share the following advantages: they do not require conditions of linearity
or constant covariance, nor do they need distributional assumptions, yet they may be computationally more demanding.
This third group of SDR algorithms estimates a basis of the central subspace as:

Wℎ =B P2 (XB,Y)

subject to B𝑇X𝑇XB = Iℎ,

where B is an arbitrary 𝑝× ℎ matrix, ℎ ∈ [1,min(𝑛, 𝑝)]. Here, P can be any statistic, that estimate a subspace whose
complement is independent of Y. Currently implemented P statistics are :

• distance covariance (Székely, Rizzo, and Bakirov 2007), leading to option dcov-sdr (Sheng and Yin 2016);

• martingale difference divergence (Shao and Zhang 2014), leading to option mdd-sdr (Zhang, Liu, Wu, and Fang
2019);

• ball covariance (Pan, Wang, Xiao, and Zhu 2019), leading to option bcov-sdr (Zhang and Chen 2019)

3.2.1 Usage

sudire([sudiremeth, n_components, trimming, ...]) SUDIRE Sufficient Dimension Reduction

12 Chapter 3. Contents

direpack, Release 1.0.10

direpack.sudire.sudire.sudire

class sudire(sudiremeth='dcov-sdr', n_components=2, trimming=0, optimizer_options={'max_iter': 1000},
optimizer_constraints=None, optimizer_arguments=None, optimizer_start=None,
center_data=True, center='mean', scale_data=True, whiten_data=False, compression=False,
n_slices=6, dmetric='euclidean', fit_ols=True, copy=True, response_type='continuous',
verbose=True, return_scaling_object=True)

SUDIRE Sufficient Dimension Reduction

The class allows for Sufficient Dimension Reduction using a variety of methods. If the method requires opti-
mization of a function, This optimization is done through the Interior Point Optimizer (IPOPT) algorithm.

Parameters

• sudiremeth (function or class. sudiremeth in this package can also be
used,) –

• are (but user defined functions can be processed. Built in options) –
save : Sliced Average Variance Estimation

sir : Slices Inverse Regression

dr : Directional Regression

iht : Iterative Hessian Transformations

dcov-sdr : SDR via Distance Covariance

mdd-sdr : SDR via Martingale Difference Divergence.

bcov-sdr : SDR via ball covariance

• n_components (int) – dimension of the central subspace.

• trimming (float) – trimming percentage to be entered as pct/100

• optimizer_options (dict) – with options to pass on to the optimizer.Includes:

• max_iter (int) – Maximal number of iterations.

• tol (float) – relative convergence tolerance

• constr_viol_tol (float) – Desired threshold for the constraint violation.

• optimizer_constraints (dict or list of dicts) – further constraints to be passed
on to the optimizer function.

• optimizer_arguments (dict) – extra arguments to be passed to the sudiremeth function
during optimization.

• optimizer_start (numpy array) – starting value for the optimization.

• center (str) – how to center the data. options accepted are options from
sprm.preprocessing

• center_data (bool) – If True, the data will be centered before the dimension reduction

• scale_data (bool) – if set to False, convergence to correct optimum is not a given. Will
throw a warning.

• compression (bool) – Use internal data compresion step for flat data.

• n_slices (int) – The number of slices for SAVE, SIR, DR

• is_distance_mat (bool) – if the inputed matrices for x and y are distance matrices.

• dmetric (str) – distance metric used internally. Defaults to ‘euclidean’

3.2. sudire 13

direpack, Release 1.0.10

• fit_ols (bool) – if True, an OLS model is fitted after the dimension reduction.

• copy (bool) – Whether to make a deep copy of the input data or not.

• verbose (bool) – Set to True prints the iteration number.

• return_scaling_object (bool.) – If True, the scaling object will be return after the
dimension reduction.

Attributes always provided

• x_loadings_: Estimated basis of the central subspace

• x_scores_: The projected X data.

• x_loc_: location estimate for X

• x_sca_: scale estimate for X

• ` ols_obj` : fitted OLS objected

• y_loc_: y location estimate

• y_sca_: y scale estimate

Attributes created only when corresponding input flags are `True`

• whitening_: whitened data matrix (usually denoted K)

• scaling_object_: scaling object from VersatileScaler

__init__(sudiremeth='dcov-sdr', n_components=2, trimming=0, optimizer_options={'max_iter': 1000},
optimizer_constraints=None, optimizer_arguments=None, optimizer_start=None,
center_data=True, center='mean', scale_data=True, whiten_data=False, compression=False,
n_slices=6, dmetric='euclidean', fit_ols=True, copy=True, response_type='continuous',
verbose=True, return_scaling_object=True)

Methods

__init__([sudiremeth, n_components, ...])

fit(X, y, *args, **kwargs) Fit a Sufficient Dimension Reduction Model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator. :param deep: If

True, will return the parameters for this estimator and
contained subobjects that are estimators. :type deep:
boolean, optional.

predict(Xn[, is_distance_mat]) predicts the response on new data Xn
score(X, y[, sample_weight]) Return the coefficient of determination of the predic-

tion.
set_params(**params) Set the parameters of this estimator.
transform(Xn[, distance_mat]) Computes the dimension reduction of the data Xn

based on the fitted sudire model.

14 Chapter 3. Contents

direpack, Release 1.0.10

Attributes

3.2.2 Dependencies

• From sklearn.base: BaseEstimator,`TransformerMixin`,`RegressorMixin`

• From sklearn.utils: _BaseComposition

• copy

• From scipy.stats : trim_mean

• From scipy.linalg: inv, sqrtm

• cython

• From ipopt : minimize_ipopt

• numpy

• From statsmodels.regression.linear_model: OLS

• statsmodels.robust

3.2.3 References

1. Wenhui Sheng and Xiangrong Yin Sufficient Dimension Reduction via Distance Covariance, in: Journal of
Computational and Graphical Statistics (2016), 25, issue 1, pages 91-104.

2. Yu Zhang, Jicai Liu, Yuesong Wu and Xiangzhong Fang, A martingale-difference-divergence-based estimation
of central mean subspace, in: Statistics and Its Interface (2019), 12, number 3, pages 489-501.

3. Li K-C, Sliced Inverse Regression for Dimension Reduction, Journal of the American Statistical Association
(1991), 86, 316-327.

4. R.D. Cook, and Sanford Weisberg, Sliced Inverse Regression for Dimension Reduction: Comment, Journal of
the American Statistical Association (1991), 86, 328-332.

5. B. Li and S.Wang, On directional regression for dimension reduction, Journal of the American Statistical
Association (2007), 102:997–1008.

6. K.-C. Li., On principal hessian directions for data visualization and dimension reduction:Another application of
stein’s lemma, Journal of the American Statistical Association(1992)., 87,1025–1039.

7. R. D. Cook and B. Li., Dimension Reduction for Conditional Mean in Regression, The Annals of Statis-
tics(2002)30(2):455–474.

8. Jia Zhang and Xin Chen, Robust Sufficient Dimension Reduction Via Ball Covariance Computational Statistics
and Data Analysis 140 (2019) 144–154

9. Li B, Sufficient Dimension Reduction: Methods and Applications with R. (2018) Chapman& Hall /CRC, Mono-
graphs on Statistics and Applied Probability, New York

3.2. sudire 15

direpack, Release 1.0.10

3.3 sprm

Sparse partial robust M regression (SPRM) is a sparse and robust alternative to PLS that can be calculated efficiently
(Hoffmann, Serneels, Filzmoser,and Croux 2015). The subpackage is organized slightly differently from the other two
mainsubpackages. Because SPRM combines the virtues of robust regression with sparse dimension reduction, besides
the SPRM estimators itself, each of these building blocks are provided themselves as class objects that can be deployed
in sklearn pipelines. The class objects rm, snipls and sprm are sourced by default when importing direpack.

3.3.1 Robust M regression

M regression is a generalization of least squares regression in the sense that it minimizes a more general objective that
allows to tune the estimator’s robustness. In M regression, the vector of regression coefficients is defined as:

�̂� = argmin
𝛽

∑︁
𝑖

𝜌

(︂
𝑟𝑖(𝛽)

�̂�

)︂
where 𝑟𝑖 are the casewise regression residuals and �̂� is a robust scale estimator thereof. The 𝜌 function defines the
properties of the estimator. Identity to the least squares estimator is obtained if 𝜌(𝑟) = 𝑟2, but robustness can be
introduced by taking a different function, for instance a function that is approximately quadratic for small (absolute)
𝑟, but increases more slowly than 𝑟2 for larger values of 𝑟. Objective (3.3.1) can be solved numerically, but it is well
known that its solution can equivalently be obtained through an iteratively reweighting least squares (IRLS), which is
how it is implemented in sprm. In the package, the Fair, Huber or Hampel reweighting functions can be picked, which
will lead to different robustness properties.

3.3.2 Sparse NIPALS

A second building block in the package is the SNIPLS algorithm. It is a sparse version of the NIPALS algorithm for
PLS and as such, essentially a computationally efficient implementation of univariate sparse PLS. Again, the SNIPLS
components are linear combinations of the original variables through a set of weighting vectors w𝑖 that maximize:

w𝑖 =a cov2
(︀
a𝑇X,y

)︀
+ 𝜆 ‖ a ‖1

subject to w𝑇
𝑖 X

𝑇Xw𝑗 = 0 and ‖ w𝑖 ‖2= 1

which in sparse PLS is typically maximized through a surrogate formulation. However, in this case, the exact solution
to Criterion (3.3.2) can be obtained, which is what the SNIPLS algorithm builds upon. For details on the algorithm,
the reader is referred to Hoffmann, Filzmoser, Serneels, and Varmuza (2016). At this point, remark that the SNIPLS
algorithm has also become a key building block to analyze outlyingness (Debruyne, Höppner, Serneels,and Verdonck
2019).

3.3.3 Sparse partial robust M

Sparse partial robust M dimension reduction unites the benefits of SNIPLS and robust M estimation: it yields an
efficient sparse PLS dimension reduction, while at the same time, it is robust against both leverage points and virtual
outliers through robust M estimation. It is defined similarly as in (3.3.2) but instead maximizing a weighted covariance,
with case weights that depend on the data. Consistent with robust M estimation, it can be calculated through iteratively
reweighting SNIPLS. SPRM improves upon the original reweighted PLS proposal by (i) yielding a sparse estimate, (ii)
having a reweighting scheme as well as starting values that weight both in the score and residual spaces and (iii) by
allowing different weight functions, the most tuneable one being the Hampel function.

16 Chapter 3. Contents

direpack, Release 1.0.10

3.3.4 Usage

sprm([n_components, eta, fun, probp1, ...]) SPRM Sparse Partial Robust M Regression

direpack.sprm.sprm.sprm

class sprm(n_components=1, eta=0.5, fun='Hampel', probp1=0.95, probp2=0.975, probp3=0.999,
centre='median', scale='mad', verbose=True, maxit=100, tol=0.01, start_cutoff_mode='specific',
start_X_init='pcapp', columns=False, copy=True)

SPRM Sparse Partial Robust M Regression

Algorithm first outlined in:
Sparse partial robust M regression, Irene Hoffmann, Sven Serneels, Peter Filzmoser, Christophe Croux,
Chemometrics and Intelligent Laboratory Systems, 149 (2015), 50-59.

Parameters

• eta (float.) – Sparsity parameter in [0,1)

• n_components (int) – min 1. Note that if applied on data, n_components shall take a value
<= min(x_data.shape)

• fun (str) – downweighting function. ‘Hampel’ (recommended), ‘Fair’ or ‘Huber’

• probp1 (float) – probability cutoff for start of downweighting (e.g. 0.95)

• probp2 (float) – probability cutoff for start of steep downweighting (e.g. 0.975, only rel-
evant if fun=’Hampel’)

• probp3 (float) – probability cutoff for start of outlier omission (e.g. 0.999, only relevant
if fun=’Hampel’)

• centre (str) – type of centring (‘mean’, ‘median’, ‘l1median’, or ‘kstepLTS’, the latter
recommended statistically, if too slow, switch to ‘median’)

• scale (str) – type of scaling (‘std’,’mad’, ‘scaleTau2’ [recommended] or ‘None’)

• verbose (booleans) – specifying verbose mode

• maxit (int) – maximal number of iterations in M algorithm

• tol (float) – tolerance for convergence in M algorithm

• start_cutoff_mode (str,) – values:’specific’ will set starting value cutoffs specific to X
and y (preferred); any other value will set X and y stating cutoffs identically. The latter yields
identical results to the SPRM R implementation available from CRAN.

• start_X_init (str,) – values: ‘pcapp’ will include a PCA/broken stick projection to cal-
culate the staring weights, else just based on X; any other value will calculate the X starting
values based on the X matrix itself. This is less stable for very flat data (p >> n), yet yields
identical results to the SPRM R implementation available from CRAN.

• columns ((def false) Either boolean, list, numpy array or pandas
Index) – if False, no column names supplied; if True, if X data are supplied as a pandas
data frame, will extract column names from the frame throws an error for other data input
types if a list, array or Index (will only take length x_data.shape[1]), the column names of
the x_data supplied in this list, will be printed in verbose mode.

• copy ((def True) boolean, whether to copy data) –

3.3. sprm 17

direpack, Release 1.0.10

Attributes always provided

• x_weights_: X block PLS weighting vectors (usually denoted W)

• x_loadings_: X block PLS loading vectors (usually denoted P)

• C_: vector of inner relationship between response and latent variablesblock re

• x_scores_: X block PLS score vectors (usually denoted T)

• coef_: vector of regression coefficients

• intercept_: intercept

• coef_scaled_: vector of scaled regression coeeficients (when scaling option used)

• intercept_scaled_: scaled intercept

• residuals_: vector of regression residuals

• x_ev_: X block explained variance per component

• y_ev_: y block explained variance

• fitted_: fitted response

• x_Rweights_: X block SIMPLS style weighting vectors (usually denoted R)

• x_caseweights_: X block case weights

• y_caseweights_: y block case weights

• caseweights_: combined case weights

• colret_: names of variables retained in the sparse model

• x_loc_: X block location estimate

• y_loc_: y location estimate

• x_sca_: X block scale estimate

• y_sca_: y scale estimate

• non_zero_scale_vars_: indicator vector of variables in X with nonzero scale

__init__(n_components=1, eta=0.5, fun='Hampel', probp1=0.95, probp2=0.975, probp3=0.999,
centre='median', scale='mad', verbose=True, maxit=100, tol=0.01, start_cutoff_mode='specific',
start_X_init='pcapp', columns=False, copy=True)

18 Chapter 3. Contents

direpack, Release 1.0.10

Methods

__init__([n_components, eta, fun, probp1, ...])

fit(X, y) Fit a SPRM model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(Xn) Predict using a SPRM model.
score(X, y[, sample_weight]) Return the coefficient of determination of the predic-

tion.
set_params(**params) Set the parameters of this estimator.
transform(Xn) Transform input data.
valscore(Xn, yn, scoring) Specific score function for validation data
weightnewx(Xn) Calculate case weights for new data based on the pro-

jection in the SPRM score space

Attributes

snipls([eta, n_components, verbose, ...]) SNIPLS Sparse Nipals Algorithm

direpack.sprm.snipls.snipls

class snipls(eta=0.5, n_components=1, verbose=True, columns=False, centre='mean', scale='None',
copy=True)

SNIPLS Sparse Nipals Algorithm

Algorithm first outlined in:
Sparse and robust PLS for binary classification, I. Hoffmann, P. Filzmoser, S. Serneels, K. Varmuza, Journal
of Chemometrics, 30 (2016), 153-162.

Parameters

• eta (float.) – Sparsity parameter in [0,1)

• n_components (int,) – min 1. Note that if applied on data, n_components shall take a
value <= min(x_data.shape)

• verbose (Boolean (def true)) – to print intermediate set of columns retained

• columns (Either boolean, list, numpy array or pandas Index (def
false)) – if False, no column names supplied; if True, if X data are supplied as a
pandas data frame, will extract column names from the frame throws an error for other
data input types if a list, array or Index (will only take length x_data.shape[1]), the column
names of the x_data supplied in this list, will be printed in verbose mode.

• centre (str,) – type of centring (‘mean’ [recommended], ‘median’ or ‘l1median’),

• scale (str,) – type of scaling (‘std’,’mad’ or ‘None’)

• copy ((def True): boolean,) – whether to copy data. Note : copy not yet aligned with
sklearn def - we always copy

3.3. sprm 19

direpack, Release 1.0.10

Attributes always provided

• x_weights_: X block PLS weighting vectors (usually denoted W)

• x_loadings_: X block PLS loading vectors (usually denoted P)

• C_: vector of inner relationship between response and latent variablesblock re

• x_scores_: X block PLS score vectors (usually denoted T)

• coef_: vector of regression coefficients

• intercept_: intercept

• coef_scaled_: vector of scaled regression coeeficients (when scaling option used)

• intercept_scaled_: scaled intercept

• residuals_: vector of regression residuals

• x_ev_: X block explained variance per component

• y_ev_: y block explained variance

• fitted_: fitted response

• x_Rweights_: X block SIMPLS style weighting vectors (usually denoted R)

• colret_: names of variables retained in the sparse model

• x_loc_: X block location estimate

• y_loc_: y location estimate

• x_sca_: X block scale estimate

• y_sca_: y scale estimate

• centring_: scaling object used internally (from VersatileScaler)

__init__(eta=0.5, n_components=1, verbose=True, columns=False, centre='mean', scale='None',
copy=True)

Methods

__init__([eta, n_components, verbose, ...])

fit(X, y) Fit a SNIPLS model.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(Xn) Predict using a SNIPLS model.
score(X, y[, sample_weight]) Return the coefficient of determination of the predic-

tion.
set_params(**params) Set the parameters of this estimator.
transform(Xn) Transform input data.

20 Chapter 3. Contents

direpack, Release 1.0.10

Attributes

3.3.5 Dependencies

• pandas

• numpy

3.3.6 References

1. Irene Hoffmann, Sven Serneels, Peter Filzmoser, Christophe Croux, Sparse partial robust M regression, Chemo-
metrics and Intelligent Laboratory Systems, 149 (2015), 50-59.

2. Sven Serneels, Christophe Croux, Peter Filzmoser, Pierre J. Van Espen, Partial robust M regression, Chemomet-
rics and Intelligent Laboratory Systems, 79 (2005), 55-64.

3. Hoffmann I., P. Filzmoser, S. Serneels, K. Varmuza, Sparse and robust PLS for binary classification, Journal of
Chemometrics, 30 (2016), 153-162.

4. Filzmoser P, Höppner S, Ortner I, Serneels S, Verdonck T. Cellwise robust M regression. Computational Statistics
and Data Analysis,147 (2020).

3.4 Pre-processing

The first step in most meaningful data analytics projects will be to pre-process the data, hence direpack proposes a set
of tools for data pre-processing.

3.4.1 Data standardization

A first, well accepted way to pre-process data is to center them and scale them to unit variance on a column wise basis.
This corresponds to transforming a x variable into z-scores:

z =
x− �̂�

�̂�

where �̂� and �̂� are estimates of location and scale, respectively. For normally distributed data, the appropriate way
to accomplish this is by centering about the mean and dividing by the column wise standard deviation. However,
when the marginal distributions in the data significantly deviate from the normal, outliers could throw the result of that
data standardization off, and robust or nonparametric alternatives become a more reliable choice. Essentially, all robust
statistics are subject to a trade-off between efficiency and robustness, which means that the variance of the estimates will
increase as the estimator can resist a higher fraction of outliers. While scikit-learn provides highly robust nonparametric
standardization in its RobustScaler, the estimators included therein are known to have a low statistical efficiency (these
are the median for location and the interquartile range for scale). Since autoscaling the data is often an essential step,
a few location and scale estimators have been implemented. For location, with increasing performance in terms of
the robustness—efficiency trade-off, these are: the column wise median, the spatial median (also called 𝐿1-median,
although it minimizes an 𝐿2 norm) and the 𝑘 step least trimmed squares (LTS, Rousseeuw and Leroy (1987)) estimator.
For scale, the consistency corrected median absolute deviation (MAD) and the 𝜏 estimator of scale (Maronna and Zamar
2002) have been included. Generally, it holds true that the more statistically efficient the estimator in these lists is, the
higher its computational cost. In preprocessing, these estimators can be accessed through its VersatileScaler class,
which takes the names of these estimators as strings, but it will also accept functions of location and scale estimators,
should the user prefer to apply other ones.

3.4. Pre-processing 21

direpack, Release 1.0.10

3.4.2 Spatial sign pre-processing

Besides standardizing data, it can be beneficial to transform data to some sort of signs. The generalized spatial sign
transformation consists of transforming a variable x into

u = (x− �̂�)× 𝑓 (x− �̂�)

where the spatial sign is obtained by setting 𝑓(𝑥) = ‖ 𝑥 ‖−1 and ‖ · ‖ denotes the norm (in all published litera-
ture in this context, the 𝐿2 norm). Since spatial sign pre-processing (SS-PP) consists of dividing the data by their
Euclidean norm, it is also known as normalizing and as such, is available in scikit-learn’s Normalizer. Spatial sign
pre-processing has been shown to convey moderate robustness to multivariate estimators that are entirely based on
covariance estimates, such as PCA or PLS (Serneels, De Nolf, and Van Espen 2006). Moderate robustness means
in this case that the resulting estimator can resist up to 50% of outliers, but will have a sizeable bias even for small
fractions of contamination. The reason why this happens is that the spatial sign transform projects all cases onto the
unit sphere indiscriminately, which can drastically change data topology, and thereby introduce bias. Recently, the
generalized spatial sign transform has been proposed (Raymaekers and Rousseeuw 2019). These authors examine a set
of different functions that can be plugged into the expression for u, some of which will only transform those cases in
the data that exceed a certain eccentricity threshold. These functions are the quadratic radial, ball, shell, Winsor and
linear redescending (LR) functions, all of which can be accessed through direpack’s GenSpatialSignPreprocessor.

3.4.3 Usage

VersatileScaler([center, scale, trimming]) VersatileScaler Center and Scale data about classical or
robust location and scale estimates

direpack.preprocessing.robcent.VersatileScaler

class VersatileScaler(center='mean', scale='std', trimming=0)
VersatileScaler Center and Scale data about classical or robust location and scale estimates

Parameters

• center (str or callable, location estimator. String has to be name of
the) – function to be used, or ‘None’.

• scale (str or callable, scale estimator) –

• trimming (trimming percentage to be used in location and scale
estimation.) –

Arguments for methods

• X: array-like, n x p, the data.

• trimming: float, fraction to be trimmed (must be in (0,1)).

22 Chapter 3. Contents

direpack, Release 1.0.10

Remarks

Options for classical estimators ‘mean’ and ‘std’ also give access to robust trimmed versions.

__init__(center='mean', scale='std', trimming=0)
Initialize values. Check if correct options provided.

Methods

__init__([center, scale, trimming]) Initialize values.
fit(X) Estimate location and scale, store these in the class

object.
fit_transform(X) Estimate center and scale for training data and scale

these data
get_params([deep]) Get parameters for this estimator.
inverse_transform([Xs]) Transform scaled data back to their original scale
predict(Xn) Standardize new data on previously estimated loca-

tion and scale.
set_params(**params) Set the parameters of this estimator.
transform(X) Center and/or scale training data to pre-estimated lo-

cation and scale

Attributes

GenSpatialSignPreProcessor([center, fun]) GenSpatialSignPreProcessor Generalized Spatial Sign
Pre-Processing as a scikit-learn compatible object that
can be used in ML pipelines.

direpack.preprocessing.gsspp.GenSpatialSignPreProcessor

class GenSpatialSignPreProcessor(center='l1median', fun='linear_redescending')
GenSpatialSignPreProcessor Generalized Spatial Sign Pre-Processing as a scikit-learn compatible object that
can be used in ML pipelines.

Parameters

• center (str or function,) – location estimator for centring.str options: ‘mean’, ‘me-
dian’, ‘l1median’, ‘kstepLTS’, ‘None’

• fun (str or function,) – radial transformation function, str options: ‘ss’ (the non-
generalized spatial sign, equivalent to sklearn’s Normalizer), ‘ball’, ‘shell’, ‘quad’
(quadratic), ‘winsor’, or ‘linear_redescending’ Methods: sklearn API: fit(X), transform(X)
and fit_transform(X) with

Attributes always provided

• gss_ : the generalized spatial signs

• Xm_ : the centred data

• centring_ : VersatileScaler centring object

3.4. Pre-processing 23

direpack, Release 1.0.10

• X_gss_pp_ : Data preprocessed by Generalized Spatial Sign

__init__(center='l1median', fun='linear_redescending')

Methods

__init__([center, fun])

fit(X) Calculate and store generalized spatial signs
fit_transform(X) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Calculate Generalized Spatial Sign Pre-Pprocessed

Data

3.4.4 References

1. Maronna RA, Zamar RH (2002). “Robust estimates of location and dispersion for high-dimensional datasets.”
Technometrics, 44(4), 307–317.

2. Rousseeuw PJ, Leroy AM (1987). Robust Regression and Outlier Detection. Wiley and Sons, New York

3. Raymaekers J, Rousseeuw PJ (2019). “A generalized spatial sign covariance matrix.” Journal of Multivariate
Analysis, 171, 94–111.

4. Serneels S, De Nolf E, Van Espen PJ (2006). “Spatial Sign Preprocessing: A Simple Way ToImpart Moderate
Robustness to Multivariate Estimators.” Journal of Chemical Information and Modeling, 46, 1402–1409.

3.5 Cross-validation and plotting

Each of the sudire, ppdire and sprm subpackages in direpackare wrappers around a broad class of dimension reduction
methods. Each of these methods will have at least one tune-able hyperparameter; some have many more. The user will
want to be able to find the optimal hyperparameters for the data at hand, which can be done through cross-validation
or bayesian optimization. It is not the aim of direpack to provide its own hyperparameter tuning algorithms, as ample
cross-validation utilities are available in scikit-learn’s model selection subpackage and the direpack estimations have
been written consistently with the scikit-learn API, such that these model selection tools from scikit-learn can directly
be applied to them. However, some caution should be taken when training the robust methods. While all classical
(non-robust) methods could just use scikit-learn’s default settings, when tuning a robust model, outliers are expected to
be in the data, such that it becomes preferable to apply a robust cross-validation metric as well. Thereunto, it is possible
to use scikit-learn’s median_absolute_error, which is an MAE (L1) scorer that is less affected by extreme values than
the default mean_squared_error. However, particularly in the case of robust M estimators, a more model consistent
approach can be pursued. The robust M estimators provide a set of case weights, and these can be used to construct a
weighted evaluation metric for cross-validation. Exactly this is provided in the robust_loss function that is a part of the
direpack cross-validation utilities.

Similar to hyperparameter tuning, direpack’s mission is not to deliver a broad set of plotting utilities, but rather focus
on the dimension reduction statistics. However, some plots many users would like to have in this context, are provided
for each of the methods. These are :

• Projection plots. These plots visualize the scores t𝑖 and a distinction can be made in the plots between cases that
the model had been trained with, and test set cases.

24 Chapter 3. Contents

direpack, Release 1.0.10

• Parity plots. For the regularized regressions based on the estimated scores, these visualize the predicted versus
actual responses, with the same distinction as for the scores.

For the special case of SPRM, the plots have enhanced functionality. Since SPRM provides case weights, which can
also be calculated for new cases, the SPRM plots can flag outliers. In the sprm_plot function, this is set up with two
cut-offs, based on the caseweight values,and visualized asregular cases,moderate outliersorharsh outliers. For SPRM,
there is anoption as well to visualize the case weights themselves.

Examples of direpack’s plotting functionalities are available in the example notebooks of ppdire, sprm and sudire .

3.6 Contributing

No package is complete and the authors would like to see direpack extend its functionality in the future. Some possible
additions could be :

• Cellwise robust dimension reduction methods : For instance, a cellwise robust version of the robust M regression
method, included in sprm, has recently been published (Filzmoseret al.2020), and could be included in direpack.

• Uncertainty quantification : The methods provided through direpack provide point estimates. In the future, the
package could, e.g. be augmented with appropriate bootstrapping techniques, as was done for a related dimension
reduction context

• GPU flexibility : There are many matrix manipulations in direpack, which can possiblybe sped up by allowing
a GPU compatibility, which could be achieved by providing a TensorFlowor PyTorch back-end. However, this
would be a major effort, since thepresent back-end integrally builds upon numpy.

• More (and better) unit tests.

3.6.1 Guidelines

Testing

Contributions should be accompanied by unit tests similar to those already available. Contrbutors can use the datasets
presented in the example notebooks.

Documentation

We have followed PEP8 style when building this project and ask that contributors do so, for ease of maintainability.

3.6.2 Article

An article with further information on the package is available. Menvouta, E.J., Serneels, S., Verdonck, T., 2023.
direpack: A python 3 package for state-of-the-art statistical dimensionality reduction methods. SoftwareX 21, 101282.

3.6. Contributing 25

https://github.com/SvenSerneels/direpack/blob/master/examples/ppdire_example.ipynb
https://github.com/SvenSerneels/direpack/blob/master/examples/sprm_example.ipynb
https://github.com/SvenSerneels/direpack/blob/master/examples/sudire_example.ipynb
https://www.python.org/dev/peps/pep-0008/

direpack, Release 1.0.10

3.6.3 Contacts

• Dr Sven Serneels is co-founder at Gallop Data, Inc. and can be contacted at svenserneel (at) gmail.com.

• Emmanuel Jordy Menvouta is a PhD researcher in Statistics and Data Science at KU Leuven and can be contacted
at emmanueljordy.menvoutankpwele (at) kuleuven.be.

• Prof Tim Verdonck is Professor of Statistics and Data Science at University of Antwerp and KU Leuven. He can
be reached at tim.verdonck (at) uantwerp.be.

26 Chapter 3. Contents

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• search

27

direpack, Release 1.0.10

28 Chapter 4. Indices and tables

INDEX

Symbols
__init__() (GenSpatialSignPreProcessor method), 24
__init__() (VersatileScaler method), 23
__init__() (dicomo method), 11
__init__() (ppdire method), 9
__init__() (snipls method), 20
__init__() (sprm method), 18
__init__() (sudire method), 14

D
dicomo (class in direpack.dicomo.dicomo), 10

G
GenSpatialSignPreProcessor (class in di-

repack.preprocessing.gsspp), 23

P
ppdire (class in direpack.ppdire.ppdire), 8

S
snipls (class in direpack.sprm.snipls), 19
sprm (class in direpack.sprm.sprm), 17
sudire (class in direpack.sudire.sudire), 13

V
VersatileScaler (class in di-

repack.preprocessing.robcent), 22

29

	Installation
	Examples
	Contents
	ppdire
	dicomo
	pp optimizers
	Regularized regression
	Usage
	direpack.ppdire.ppdire.ppdire
	direpack.dicomo.dicomo.dicomo

	Dependencies
	References

	sudire
	Usage
	direpack.sudire.sudire.sudire

	Dependencies
	References

	sprm
	Robust M regression
	Sparse NIPALS
	Sparse partial robust M
	Usage
	direpack.sprm.sprm.sprm
	direpack.sprm.snipls.snipls

	Dependencies
	References

	Pre-processing
	Data standardization
	Spatial sign pre-processing
	Usage
	direpack.preprocessing.robcent.VersatileScaler
	Remarks

	direpack.preprocessing.gsspp.GenSpatialSignPreProcessor

	References

	Cross-validation and plotting
	Contributing
	Guidelines
	Testing
	Documentation

	Article
	Contacts

	Indices and tables
	Index

